Skip to main content Skip to secondary navigation

Publications

Main content start

Neuner M, Dummer A, Abrari Vajari S, Gamnitzer P, Gimperlein H, Linder C, Hofstetter G, 2024. A B-spline based gradient-enhanced micropolar implicit material point method for large localized inelastic deformations. Computer Methods in Applied Mechanics and Engineering. 431: 117291. Google Scholar

 

Arunachala P K, Abrari Vajari S, Neuner M, Sim J, Zhao R, Linder C, 2024. A multiscale anisotropic polymer network model coupled with phase field fracture. International Journal for Numerical Methods in Engineering, 2024;e7488. Google Scholar

 

Xie J, Linder C, Circular cavities and inhomogeneities in anti-plane flexoelectricity. European Journal of Mechanics - A/Solids, 2024, 105251. Google Scholar

 

Xie J, Linder C, Plane strain problem of flexoelectric cylindrical inhomogeneities. International Journal of Solids and Structures, 2024, Volume 289, 112649. Google Scholar

 

Wu H-C, Nikzad S, Zhu C, Yan H, Li Y, Niu W, Matthews J.R, Xu J, Matsuhisa N, Arunachala P K, Rastak R, Linder C, Zheng Y-Q, Toney M.F, He M, Bao Z, Highly stretchable polymer semiconductor thin films with multi-modal energy dissipation and high relative stretchability. Nature Communications. Google Scholar

 

Abrari Vajari S, Neuner M, Arunachala P K, Linder C, 2023. Investigation of driving forces in a phase field approach to mixed mode fracture of concrete. Computer Methods in Applied Mechanics and Engineering. 417: 116404. Google Scholar

 

JAM

Xie J, Linder C, 2023, Analysis of Flexoelectric Solids with a Cylindrical Cavity. Journal of Applied Mechanics. 2023. Google Scholar

 

 Xie J, McAvoy R, Linder C, 2023, An analytical model for nanoscale flexoelectric doubly curved shells. Mathematics and Mechanics of Solids. 2023: 0(0). Google Scholar

 

cmame

Arunachala P K, Abrari Vajari S, Neuner M, Linder C, 2023. A multiscale phase field fracture approach based on the non-affine microsphere model for rubber-like materials. Computer Methods in Applied Mechanics and Engineering. 410: 115982. Google Scholar

 

Engineering_mechanics

Qiu Y, Arunachala P K, Linder C, 2023. SenseNet: A physics-informed deep learning model for shape sensing. Journal of Engineering Mechanics. 149: 04023002. Google Scholar

 

Computers_and_Geo

Neuner M, Abrari Vajari S, Arunachala P K, Linder C, 2023. A better understanding of the mechanics of borehole breakout utilizing a finite strain gradient-enhanced micropolar continuum model. Computers and Geotechnics. 153:105064. Google Scholar

 

cmame

Abrari Vajari S, Neuner M, Arunachala P K, Ziccarelli A, Deierlein G, Linder C, 2022. A thermodynamically consistent finite strain phase field approach to ductile fracture considering multi-axial stress states. Computer Methods in Applied Mechanics and Engineering. 400:115467. Google Scholar

 

Solids_and_Structres

Neuner M, Regueiro R, Linder C, 2022. A unified finite strain gradient-enhanced micropolar continuum approach for modeling quasi-brittle failure of cohesive-frictional materials. International Journal of Solids and Structures. 254-255:111841. Google Scholar

 

Power_Sources

Qiu Y, Zhang X, Usubelli C, Mayer D, Linder C, Christensen J, 2022. Understanding thermal and mechanical effects on lithium plating in lithium-ion batteries. Journal of Power Sources. 541:231632. Google Scholar

 

Journal Articles (refereed)

Arunachala P K, Rastak R, Linder C, 2021. Energy based fracture initiation criterion for strain-crystallizing rubber-like materials with pre-existing cracks. Journal of the Mechanics and Physics of Solids. 157 (2021) 104617. Google Scholar
 
Dortdivanlioglu B, Yilmaz NED, Goh KB, Zheng X, Linder C,  2021.  Swelling-induced interface crease instabilities at hydrogel bilayers. Journal of Elasticity. 145(1):31–47. DOI Google Scholar
 
Zhang X, Klinsman M, Chumakov S, Li X, Kim SU, Metzger M, Besli MM, Klein R, Linder C, Christensen J ,  2021.  A modified electrochemical model to account for mechanical effects due to lithium intercalation and external pressure. Journal of the Electrochemical Society. 168:020533.  Google Scholar
 
Wang W, Wang S, Rastak R, Ochiai Y, Niu S, Jiang Y, Arunachala P K, Zheng Y, Xu J, Matsuhisa N, Yan X, Kwon S-K, Miyakawa M, Zhang Z, Ning R, Foudeh A, Yun Y, Linder C, Tok J, Bao Z,  2021.  Strain-insensitive intrinsically stretchable transistors and circuits. Nature Electronics. 4(2):143–150.  Google Scholar
 
Zhang X, Chumakov S, Li X, Klinsmann M, Kim SU, Linder C, Christensen J,  2020.  An electro-chemo-thermo-mechanical coupled three-dimensional computational framework for lithium-ion batteries. Journal of the Electrochemical Society. 167:160542.  Google Scholar
 
Lejeune E, Linder C,  2020.  Interpreting stochastic agent-based models of cell death. Computer Methods in Applied Mechanics and Engineering. 360:112700. Google Scholar
 
Krischok A, Linder C,  2019.  A generalized inf-sup test for multi-field mixed-variational methods. Computer Methods in Applied Mechanics and Engineering. accepted for publication. Google Scholar
 
Jin T, Mourad HM, Bronkhorst CA, Livescu V, Zhang X, Linder C, Regueiro RA,  2019.  Three-dimensional explicit finite element formulation for shear localization with global tracking of embedded weak discontinuities. Computer Methods in Applied Mechanics and Engineering. 353:416–447. DOI Google Scholar 
 
Chen G, Rastak R, Wang Y, Yan H, Feig V, Liu Y, Jiang Y, Chen S, Lian F, Molina-Lopez F, Jin L, Cui K, Chung JW, Pop E, Linder C, Bao Z,  2019.  Strain- and strain-rate-invariant conductance in a stretchable and compressible 3D conducting polymer foam. Matter. in press. Google Scholar 
 
Lejeune E, Dortdivanlioglu B, Kuhl E, Linder C,  2019.  Understanding the mechanical link between oriented cell division and cerebellar morphogenesis. Soft Matter. 15:2204-2215. DOI Google Scholar
 
Dortdivanlioglu B, Linder C,  2019.  Diffusion-driven swelling-induced instabilities of hydrogels. Journal of the Mechanics and Physics of Solids. 125:38-52.  DOI  Google Scholar
 
Zhang X, Klein R, Subbaraman A, Chumakov S, Li X, Christensen J, Linder C, Kim SU,  2019.  Evaluation of convective heat transfer coefficient and specific heat capacity of a lithium-ion battery using infrared camera and lumped capacitance method. Journal of Power Sources. 412:552-558.  DOI Google Scholar
 
Lejeune E, Linder C,  2018.  Understanding the relationship between cell death and tissue shrinkage via a stochastic agent-based model. Journal of Biomechanics. 73:9-17. DOI Google Scholar 
 
Han T-S, Zhang X, Kim J-S, Chung S-Y, Lim J-H, Linder C, 2018.  Area of lineal-path function for describing the pore microstructures of cement paste and their relations to the mechanical properties simulated from μ-CT microstructures. Cement and Concrete Composites. 89:1-17. DOI Google Scholar
 
Jin L, Chortos A, Lian F, Pop E, Linder C, Bao Z, Cai W,  2018.  Microstructural origin of resistance-strain hysteresis in carbon nanotube thin film conductors. Proceedings of the National Academy of Sciences. 115(9):1986-1991. DOI Google Scholar
 
Rastak R, Linder C,  2018.  A non-affine micro-macro approach to strain-crystallizing rubber-like materials. Journal of the Mechanics and Physics of Solids. 111:67-99. DOI Google Scholar
 
Dortdivanlioglu B, Krischok A, Beirão da Veiga L, Linder C,  2018.  Mixed isogeometric analysis of strongly coupled diffusion in porous materials. International Journal for Numerical Methods in Engineering. 114(1):28-46. DOI Google Scholar
 
Lejeune E, Linder C,  2018.  Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids. Biomechanics and Modeling in Mechanobiology. 17(3):727-743. DOI Google Scholar
 
Yue W, Zhu C, Pfattner R, Yan H, Jin L, Chen S, Molina-Lopez F, Lissel F, Liu J, Rabiah N, Chen Z, Chung JW, Linder C, Toney M, Murmann B, Bao Z, 2017.   A highly stretchable, transparent, and conductive polymer. Science Advances. 3:e1602076. DOI Google Scholar
 
Reinoso J, Paggi M, Linder C, 2017.  Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation. Computational Mechanics, 59(6):981-1001. DOI Google Scholar
 
Ehlers W, Govindjee S, Keip M, Kiefer B, Linder C, Schröder J,  2017.  In Memoriam of Christian Miehe. Mechanics Research Communications. 80:3. DOI Google Scholar BibTex
Lejeune E, Linder C,  2017.  Quantifying the relationship between cell division angle and morphogenesis through computational modeling. Journal of Theoretical Biology. 418:1-7. DOI Google Scholar
 
Lejeune E, Linder C,  2017.  Modeling tumor growth with peridynamics. Biomechanics and Modeling in Mechanobiology, 16(4):1141-1157. DOI Google Scholar
 
Xu J, Wang S, Wang GJ, Zhu C, Jin L, Gu X, Chen S, To J, Rondeau-Gagné S, Schroeder B, Lu C, Oh J, Wang Y, Kim YH, Yan H, Xue G, Murmann B, Linder C, Cai W, Tok J, Chung JW, Bao Z, 2017. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science, 355(6320):59-64. DOI Google Scholar
 
Dortdivanlioglu B, Javili A, Linder C,  2017.  Computational aspects of morphological instabilities using isogeometric analysis. Computer Methods in Applied Mechanics and Engineering. 316:261-279. DOI Google Scholar
 
Lejeune E, Javili A, Weickenmeier J, Kuhl E, Linder C,  2016. Tri-layer wrinkling as a mechanism for anchoring center initation in the developing cerebellum. Soft Matter. 12:5613-5620. DOI Google Scholar
 
Zhang X, Krischok A, Linder C, 2016. A variational framework to model diffusion induced large plastic deformation and phase field fracture during initial two-phase lithiation of silicon electrodes. Computer Methods in Applied Mechanics and Engineering. 312:51-77. DOI Google Scholar
 
Keip M-A, Kiefer B, Schröder J, Linder C,  2016.  Special Issue on Phase Field Approaches to Fracture: In Memory of Professor Christian Miehe (1956–2016). Computer Methods in Applied Mechanics and Engineering. 312:1-2. DOI Google Scholar
 
Li C-H, Wang C, Keplinger C, Zuo J-L, Jin L, Sun Y, Zheng P, Cao Y, Lissel F, Linder C, You X-Z, Bao Z,  2016.   A highly stretchable autonomous self-healing elastomer. Nature Chemistry. 8:618–624. DOI Google Scholar
 
Lejeune E, Javili A, Linder C,  2016.  An algorithmic approach to multi-layer wrinkling. Extreme Mechanics Letters. 7:10-17. DOI Google Scholar
 
Krischok A, Linder C,  2016.  Erratum: On the enhancement of low-order mixed finite element methods for the large deformation analysis of diffusion in solids. International Journal for Numerical Methods in Engineering. 107(5):450. DOI Google Scholar
 
Krischok A, Linder C,  2016.  On the enhancement of low-order mixed finite element methods for the large deformation analysis of diffusion in solids. International Journal for Numerical Methods in Engineering. 106(4):278–297. DOI Google Scholar
 
Lejeune E, Javili A, Linder C,  2016.  Understanding geometric instabilities in thin films via a multi-layer model. Soft Matter. 12:806-816. DOI Google Scholar
 
Raina A, Linder C,  2015.   A micromechanical model with strong discontinuities for failure in nonwovens at finite deformation. International Journal of Solids and Structures. 75-76:247-259. DOI Google Scholar
 
Javili A, Chatzigeorgiou G, McBride AT, Steinmann P, Linder C,  2015.  Computational homogenization of nano-materials accounting for size effects via surface elasticity. GAMM Mitteilungen. 38(2):285-312. DOI Google Scholar
 
Kochmann D, Linder C,  2015.  Preface of the guest editors. GAMM-Mitteilungen. 38(2):198-200. DOI Google Scholar
 
Javili A, Dortdivanlioglu B, Kuhl E, Linder C,  2015.  Computational aspects of growth-induced instabilities through eigenvalue analysis. Computational Mechanics. 56:405-420. DOI Google Scholar
 
Zhang X, Lee S, Lee H-W, Cui Y, Linder C,  2015.  A reaction-controlled diffusion model for the lithiation of silicon in lithium-ion batteries. Extreme Mechanics Letters. 4:61-75. DOI Google Scholar
 
Schauer V, Linder C,  2015.  The reduced basis method in all-electron calculations with finite elements. Advances in Computational Mathematics. 41(5):1035-1047. DOI Google Scholar
 
Linder C,  2014.   A complex variable solution based analysis of electric displacement saturation for a cracked piezoelectric material. Journal of Applied Mechanics. 81:091006(10). DOI Google Scholar
 
Linder C, Zhang X,  2014. Three-dimensional finite elements with embedded strong discontinuities to model failure in electromechanical coupled materials. Computer Methods in Applied Mechanics and Engineering. 273:143-160. DOI Google Scholar
 
Raina A, Linder C,  2014.  A homogenization approach for nonwoven materials based on fiber undulations and reorientation. Journal of the Mechanics and Physics of Solids. 65:12-34. DOI Google Scholar
 
Krischok A, Tkachuk M, Linder C,  2014.  A thermodynamically consistent and numerically stable formulation for the description of diffusion in polymeric gels. PAMM. 14:487-488. DOI Google Scholar
 
Raina A, Linder C,  2014.  Failure in anisotropic nonwoven materials at finite deformation. PAMM. 14:377-378. DOI Google Scholar
 
Linder C, Zhang X,  2013. A marching cubes based failure surface propagation concept for 3D finite elements with non-planar embedded strong discontinuities of higher order kinematics. International Journal for Numerical Methods in Engineering. 96:339-372. DOI Google Scholar
 
Schauer V, Linder C,  2013. All-electron Kohn-Sham density functional theory on hierarchic finite element spaces. Journal of Computational Physics. 250:644-664. DOI Google Scholar
 
Linder C, Raina A,  2013.  A strong discontinuity approach on multiple levels to model solids at failure. Computer Methods in Applied Mechanics and Engineering. 253:558-583. DOI Google Scholar
 
Raina A, Linder C, 2013. Modeling reorientation phenomena in nonwoven materials with random fiber network microstructure. PAMM. 13:249-250. DOI Google Scholar
 
Linder C, 2013. 3D finite elements to model electromechanical coupled solids at failure. PAMM. 13:81-82. DOI Google Scholar
 
Tkachuk M, Linder C,  2012.  The maximal advance path constraint for the homogenization of materials with random network microstructure. Philosophical Magazine. 92:2779-2808. DOI Google Scholar
 
Linder C,  2012.  An analysis of the exponential electric displacement saturation model in fracturing piezoelectric ceramics. Technische Mechanik. 32:53-69. Google Scholar 
 
Linder C, Miehe C,  2012.  Effect of electric displacement saturation on the hysteretic behavior of ferroelectric ceramics and the initiation and propagation of cracks in piezoelectric ceramics. Journal of the Mechanics and Physics of Solids. 60:882-903. DOI Google Scholar
 
Tkachuk M, Linder C,  2012.  Homogenization of random elastic networks with non-affine kinematics. PAMM. 12:417-418. DOI Google Scholar
 
Schauer V, Linder C,  2012.  All-electron calculations with finite elements. PAMM. 12:353-354. DOI Google Scholar
 
Raina A, Linder C,  2012.  Modeling quasi-static crack growth with the embedded finite element method on multiple levels. PAMM. 12:135-136. DOI Google Scholar
 
Zhang X, Linder C,  2012.  New three-dimensional finite elements with embedded strong discontinuities to model solids at failure. PAMM. 12:133-134. DOI Google Scholar
 
Linder C, Tkachuk M, Miehe C,  2011.  A micromechanically motivated diffusion-based transient network model and its incorporation into finite rubber viscoelasticity. Journal of the Mechanics and Physics of Solids. 59:2134-2156. DOI Google Scholar
 
Linder C, Rosato D, Miehe C,  2011.  New finite elements with embedded strong discontinuities for the modeling of failure in electromechanical coupled solids. Computer Methods in Applied Mechanics and Engineering. 200:141-161. DOI Google Scholar
 
Tkachuk M, Linder C,  2011.  Microstructural driven computational modeling of polymers. PAMM. 11:557-558. DOI Google Scholar
 
Schauer V, Linder C,  2011.  Finite element solution of the Kohn-Sham equations. PAMM. 11:491-492. DOI Google Scholar
 
Raina A, Linder C,  2011.  A strong discontinuity based adaptive refinement approach for the modeling of crack branching. PAMM. 11:171-172. DOI Google Scholar
 
Raina A, Linder C,  2010.  Modeling crack micro-branching using finite elements with embedded strong discontinuities. PAMM. 10:681-684. DOI Google Scholar
 
Armero F, Linder C,  2009.  Numerical simulation of dynamic fracture using finite elements with embedded discontinuities. International Journal of Fracture. 160:119-141. DOI Google Scholar
 
Linder C, Armero F,  2009.  Finite elements with embedded branching. Finite Elements in Analysis and Design. 45:280-293. DOI Google Scholar
 
Armero F, Linder C,  2008.  New finite elements with embedded strong discontinuities in the finite deformation range. Computer Methods in Applied Mechanics and Engineering. 197:3138-3170. DOI Google Scholar
 
Linder C, Armero F,  2007.  Finite elements with embedded strong discontinuities for the modeling of failure in solids. International Journal for Numerical Methods in Engineering. 72:1391–1433. DOI Google Scholar
 
Li S, Linder C, Foulk III J W.,  2007.  On configurational compatibility and multiscale energy momentum tensors. Journal of the Mechanics and Physics of Solids. 55:980-1000. DOI Google Scholar
 
 

Conference Proceedings (refereed and non-refereed)
 
Spahn J, Andrä H, Kabel M, Müller R, Linder C,  2014.  Multiscale modeling of progressive damage in elasto-plastic composite materials. Proceedings of the 11th World Congress on Computational Mechanics, E. Onate, J. Oliver and A. Huerta (Eds), 1-12 Google Scholar
 
Armero F, Linder C,  2009.  Numerical modeling of dynamic fracture. Proceedings of the ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN09). Google Scholar
 
Armero F, Linder C,  2007.  Recent developments in the formulation of finite elements with embedded strong discontinuities. In Discretization Methods for Evolving Discontinuities, Proceedings of the IUTAM Symposium. 5:105-122. Google Scholar
 
Guggenberger W, Linder C,  2004.  Analogy model for the axisymmetric elastic edge bending problem in shells of revolution based on Geckeler’s approximation. In Progress in Structural Engineering, Mechanics and Computation, Proc. of the 2nd International Conference on Structural Engineering, Mechanics and Computation. Google Scholar
 
Guggenberger W, Linder C,  2003.  Elastic stress analysis of axisymmetric discontinuities in shells of revolution by an effective ring analogy model. ECCS International Conference on Design, Inspection, Maintenance and Operation of Cylindrical Steel Tanks and Pipelines. Google Scholar
 
 
Technical Reports (non-refereed)


Rastak R,  2020.  Computational Modeling of Polymer-Based Stretchable Electronic Systems. Ph.D. Thesis, Department of Civil and Environmental Engineering, Stanford University. Google Scholar

Dortdivanlioglu B,  2019.  Computational methods to study mechanical instabilities in soft and multi-physics media. Ph.D. Thesis, Department of Civil and Environmental Engineering, Stanford University. Google Scholar

Krischok A,  2019.  A Stability Framework for the Galerkin Approximation of Multifield Saddle Point Principles with Applications to Irreversible Problems. Ph.D. Thesis, Department of Civil and Environmental Engineering, Stanford University. Google Scholar

Lejeune E,  2018.  Numerical Modeling of Mechanically Driven Emergent Behavior in Biological Systems. Ph.D. Thesis, Department of Civil and Environmental Engineering, Stanford University. Google Scholar 

Zhang X,  2018.  Numerical modeling of energy storage materials. Ph.D. Thesis, Department of Civil and Environmental Engineering, Stanford University. Google Scholar

Raina A,  2014.  Multi-level descriptions of failure phenomena with the strong discontinuity approach. Ph.D. Thesis, Institute of Applied Mechanics (Chair I), University of Stuttgart. Google Scholar

Schauer V,  2014.  Finite element based electronic structure calculations. Ph.D. Thesis, Institute of Applied Mechanics (Chair I), University of Stuttgart. Google Scholar 

Linder C,  2013.  On the computational modeling of micromechanical phenomena in solid materials. Habilitation Thesis, Institute of Applied Mechanics (Chair I), University of Stuttgart. Google Scholar 

Swayamjyoti S,  2013.  Finite element implementation of orbital-free density functional theory for electronic structure calculations. M.Sc. Thesis, Computational Mechanics of Materials and Structures, University of Stuttgart. Google Scholar

Zhang X,  2011.  New 3D finite elements with embedded strong discontinuities. M.Sc. Thesis, Computational Mechanics of Materials and Structures, University of Stuttgart. Google Scholar 

Raina A,  2010.  A multilevel embedded finite element method for the modeling of crack branching. M.Sc. Thesis, Computational Mechanics of Materials and Structures, University of Stuttgart. Google Scholar

Tkachuk M,  2010.  A micromechanically based model for viscoelasticity of rubbery polymers. M.Sc. Thesis, Computational Mechanics of Materials and Structures, University of Stuttgart. Google Scholar

Armero F, Linder C,  2008.  Numerical simulation of dynamic fracture using finite elements with embedded discontinuities. Report No. UCB/SEMM-2008/01, Department of Civil and Environmental Engineering, University of California, Berkeley.  Google Scholar

Linder C,  2007.  New finite elements with embedded strong discontinuities for the modeling of failure in solids. Ph.D. Thesis, Department of Civil and Environmental Engineering, University of California, Berkeley. Google Scholar

Linder C,  2006.  Application of differential topology for the derivation of compatibility conservation laws in mechanics. M.A. Thesis, Department of Mathematics, University of California, Berkeley. Google Scholar

Linder C,  2005.  Finite elements with strong discontinuities. Qualifying Report, Department of Civil and Environmental Engineering, University of California, Berkeley. Google Scholar

Linder C,  2003.  An arbitrary Lagrangian-Eulerian finite element formulation for dynamics and finite strain plasticity models. M.Sc. Thesis, Computational Mechanics of Materials and Structures, University of Stuttgart.  Google Scholar

Linder C,  2001.  Theory of general shells of revolution and development of an analogy model for the efficient computation of axisymmetric edge bending effects. Diploma Thesis, Department of Civil Engineering, Technical University Graz. Google Scholar