Introduction
Examples of saddle point principles in applied mechanics:

RHz

Motivation:

- Numerous coupled problems in thermodynamics can be described by a discrete Lagrangian from which the Euler equations follow from a saddle point principle.
- Stability conditions for mixed finite elements for such multi-fold saddle points need to be identified and verified for the element design of new models.
- Phase separation processes such as Cahn-Hilliard type diffusion exhibit physical \& numerical instabilities that need to be addressed

Gradient-extended plasticity

$$
\bullet \bullet \cdot
$$

$$
\bullet
$$

Stability estimate and numerical verification:
Let the displacements u and equivalent plastic strains α be H_{0}^{1}-elliptic and let all fields including the driving forces f satisfy for a real constant β that:

```
{{\mp@subsup{u}{}{*},\mp@subsup{\alpha}{}{*},\mp@subsup{f}{}{*}}={\mp@code{Arg{ inf}
```

Then for $C>0$ the estimate for stability (and thus uniqueness)
$\left\|u_{h}^{*}-\boldsymbol{u}^{I}\right\|_{H^{1}}+\left\|\boldsymbol{\alpha}_{h}^{*}-\boldsymbol{\alpha}^{I}\right\|_{H^{1}}+\left\|f_{h}^{*}-f^{I}\right\|_{L^{2}} \leq C\left(\left\|u^{*}-\boldsymbol{u}^{I}\right\|_{H^{1}}+\left\|\boldsymbol{\alpha}^{*}-\boldsymbol{\alpha}^{I}\right\|_{H_{1}}+\left\|f^{*}-\boldsymbol{f}^{\prime}\right\|_{L^{2}}\right)$
holds in a neighborhood around the unique saddle point $\left\{u^{*}, \alpha^{*}, f\right\}$

The previously unknown stability condition was identified and it was shown in a generalized eigenvalue test that the $Q 1 Q 1_{B} Q 0$ element proposed in [3] is always stable.
Phase field modeling of blend manufacturing

Proposed model:
Consider the motion φ, concentration c and chem. potential in the problem

for the phases $i \in \tilde{S}=\{A, B\}$ referring to polymer type A and B satisfying the balance of linear momentum, Cahn-Hilliard diffusion and mass conservation through

$$
\begin{aligned}
\int_{B} \boldsymbol{P}: \delta \boldsymbol{F} d V-\mathcal{F}^{2 e t}\left[\delta \boldsymbol{u}^{h}\right] & =0 \\
\int_{\mathbb{B}}\left\{s_{i} \delta c_{i}+\epsilon_{i}^{\nabla} \nabla c_{i} \cdot \nabla \delta c_{i}-\mu_{i} \delta c_{i}\right\} d V & =0 \\
\int_{B}\left\{-\delta \mu_{i}\left(c_{i}-c_{i}^{n}\right)+\Delta t \boldsymbol{Q}_{i} \cdot \nabla \delta \mu_{i}\right\} d V & =0
\end{aligned}
$$

where $P=\partial_{F} \psi_{\text {stor }}$
where $s_{i}=\partial_{c} \psi_{\text {stor }}$
where $Q_{i}=\partial_{-\nabla_{\mu}} \phi_{d \text { dis }}$

Conclusion:
The model couples mechanics, Cahn-Hilliard-type phase separation and evaporation in a combined manner and is thus able to predict morphologies in various cases. It supports speculations in [7] that the unfavorable horizontal layer alignment is due to the interface energy being a strong function of the solvent fraction.
Phase field topology optimization
Proposed model:
Consider elliptic displacements u and concentration c with a concave potential μ in

Then we have for $C>0$ the estimate for stability (and thus uniqueness)
in a neighborhood around the unique saddle point $\left\{u^{*}, c^{*}, \mu^{*}\right\}$.

Conclusion:
The proposed model provides reliable results with a Q2Q1Q1 interpolation although it can be shown that some minor zero modes remain [3].

Incompatible modes in finite poroelasticity

Swelling gel with enhanced modes undergoing hourglassing.

Proposed element formulation and numerical test:
Let the motion φ and the strain enhancement $\tilde{\mathbb{F}}$ be H_{0}^{1}-elliptic and let all fields including the (pore) pressure satisfy for a real constant β that:

The weak equations for balance of linear momentum, the orthogonality constraint and mass conservation are

$$
\begin{aligned}
& \int_{\mathcal{B}}\left\{\boldsymbol{\tau}_{\text {eff }}: \operatorname{sym}\left(\nabla_{x} \delta \boldsymbol{\varphi}\right)-B p 1 D J[\delta \boldsymbol{\varphi}]\right\} d V-\mathscr{P}_{\text {ext }}(\delta \boldsymbol{\varphi})=0 \\
& \int_{\mathcal{B}}\left\{\boldsymbol{\tau}_{\text {eff }}: \operatorname{sym}\left(\boldsymbol{F}^{-T} \delta \tilde{\boldsymbol{F}}\right)-B p 1 D J[\delta \tilde{\boldsymbol{F}}]\right\} d V=0 \\
& \int_{\mathcal{B}}\left\{-B\left(J-J_{n}\right) \delta p-\frac{1}{M}\left(p-p_{n}\right) \delta p+\Delta t \boldsymbol{q} \cdot \nabla_{x} \delta p\right\} d V-\mathscr{P}_{\text {ext }}(\delta p)=0 .
\end{aligned}
$$

Then we have for $C>0$ the estimate for stability (and thus uniqueness)

$$
\left\|\boldsymbol{u}_{h}^{*}-\boldsymbol{u}^{I}\right\|_{H^{1}}+\left\|\tilde{\mathbb{F}}_{h}^{*}-\tilde{\mathbb{F}}^{\prime}\right\|_{L^{2}}+\left\|p_{h}^{*}-p^{I}\right\|_{H^{1}} \leq C\left(\left\|\boldsymbol{u}^{*}-\boldsymbol{u}^{I}\right\|_{H^{1}}+\left\|\tilde{\mathbb{F}}^{*}-\tilde{\mathbb{F}}^{I}\right\|_{L^{2}}+\left\|p^{*}-p^{T}\right\|_{H^{1}}\right.
$$

It can be shown that the classical test and its extension to incompatible modes satisfies uniqueness in poroelasticity [4]. We propose the incompatible enhancement [2]

$$
\mathbb{F}_{h}(\boldsymbol{\xi})=\left[\begin{array}{ccc}
\Gamma_{1} \xi+\tilde{\Gamma}_{3} \xi \eta & 0 \\
0 & \Gamma_{2} \eta+\tilde{\Gamma}_{4} \xi \eta
\end{array}\right] \quad \text { and } \quad \mathbb{F}(\xi)=\left[\begin{array}{ccc}
\tilde{\Gamma}_{1} \xi+\tilde{\Gamma}_{4} \xi \eta+\tilde{\Gamma}_{5} \xi \zeta & 0 & 0 \\
0 & \tilde{\Gamma}_{2} \eta+\tilde{\Gamma}_{6} \eta \xi+\tilde{\Gamma}_{\Gamma} \eta \zeta & 0 \\
0 & 0 & \tilde{\Gamma}_{3} \zeta+\tilde{\Gamma}_{8} \zeta \xi+\tilde{\Gamma}_{5}(\eta \eta
\end{array}\right]
$$

Conclusion:
The proposed formulation is free from severe hourglassing, locking resistant and inf-sup stable while allowing low-order interpolations and is hence trusted to be a robust alternative to parameter-dependent low-order stabilizations methods in poroelasticity.

References

[1] X. Zhang, A. Krischok \& C. Linder (2016). Comput. Methods Appl. Mech. Eng. 312(2017):51-77.
[2] A. Krischok \& C. Linder (2016). Int. J. Numer. Meth. Eng. 106(4):278-297.
[3] A. Krischok \& C. Linder (2019). Comput. Methods Appl. Mech. Eng. 357:112497
[4] B. Dortdivanlioglu et al. (2017). Int. J. Numer. Meth. Eng. 114(1):28-46.
[5] D. Chapelle \& K.J. Bathe (1993). Comput. Struct. 47(4-5):537-545.
[6] C. Miehe, F. Aldakheel \& S. Mauthe (2013). Int. J. Numer. Meth. Eng. 94(11):1037-1074
[7] S. Heriot \& R. Jones (2005). Nat. Mater. 4(10):782-768.
[8] P. Mira et al. (2003). Comput. Methods. Appl. Mech. Eng. 192(37):4257-4277.
[9] P. Wriggers \& S. Reese (1996). Comput. Methods Appl. Mech. Eng. 135(3-4):201-209.
[10] D. Pantuso \& K.J. Bathe (1997). Fin. Elem. Anal. Des. 28(2):83-104.

