Introduction
Examples of saddle point principles in applied mechanics:
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Footing problem in poroelasticity [4]. Shear test in gradient-extended plasticity [3]. Diffusion-induced fracture in Si-batteries [1]. Manufacturing of blended polymers [3].

Motivation:

@ Numerous coupled problems in thermodynamics can be described by a discrete Lagrangian from which the Euler equations follow
from a saddle point principle.

@ Stability conditions for mixed finite elements for such multi-fold saddle points need to be identified and verified for the element
design of new models.

@ Phase separation processes such as Cahn-Hilliard type diffusion exhibit physical & numerical instabilities that need to be addressed.

Gradient-extended plasticity

HpBe BN NORE

Uu Q Q f u Q f
Stability estimate and numerical verification:

Q1Q1Q1 element Q1Q1QO0 element Q1Q15Q0 element
Let the displacements « and equivalent plastic strains o be Hl-elliptic and let all fields including the driving forces j satisfy for a real
constant g that:

{u*,a*, '} = Arg{ inf inf sup (IT%(u,,f)}  with
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Then for ¢ > 0 the estimate for stability (and thus uniqueness)
[y, — w1+ [|og, — o[ + [Ty = 112 < € (JJu" — w' || + [ = o[ [ + [ = ] 12)

holds in a neighborhood around the unique saddle point {u* o*,f}.
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Fully elastic case. Fully plastic case.

Conclusion:

The previously unknown stability condition was identified and it was shown in a generalized eigenvalue test that the (Q1Q1 Q)0
element proposed in [3] is always stable.

Phase field modeling of blend manufacturing
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Blend formation during spin-coating showing an unstable phase separation. Displacements can be due to either volumetric evaporation or isochoric chain deformation.

Proposed model:

Consider the motion ¢, concentration ¢ and chem. potential in the problem
P P P
{@*, ¢ty = Arg{ inf inf sup T®(w,c,p)} where TI%(u,c, p) :/¢stor(u,c)dV—|—/Atfbdiss(c, w)dV — 11%¢
B B

uEH& c;eH! p;€HL

for the phases i ¢ S = {4, B} referring to polymer type A and B satisfying the balance of linear momentum, Cahn-Hilliard diffusion
and mass conservation through

/ P OFdV — Fosu’] = 0 where P = Ot
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Solvent dependent interface.

Where QZ = a_vuﬁbdiss .
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Constant interface.
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Conclusion:

The model couples mechanics, Cahn-Hilliard-type phase separation and evaporation in a combined manner and is thus able to predict
morphologies in various cases. It supports speculations in [7] that the unfavorable horizontal layer alignment is due to the interface
energy being a strong function of the solvent fraction.

Phase field topology optimization

Proposed model:
Consider elliptic displacements « and concentration ¢ with a concave potential 1 in
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{u,c*, 1} = Arg{ inf inf sup (II®(w,c,p)}  with
el 2 (e[ g+ {lel )

u€H01 ceH! pneH!

sup sup inf [ >06>0.

ueH} ceH? peH?
Then we have for ¢ > 0 the estimate for stability (and thus uniqueness)
[’ —wf[ g+ 1le" =l + " = |l < C (g — w{lgn + [l — Mg+ s — 1 l1)

in a neighborhood around the unique saddle point {u* ¢, 1.
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Stable and unstable solution.

Evolution of phase field to the optimized topology.

Conclusion:

The proposed model provides reliable results with a Q2Q1Q1 interpolation although it can be shown that some minor zero modes
remain [3].

Incompatible modes in finite poroelasticity

Swelling gel with enhanced modes undergoing hourglassing.

Footing problem with unstable pressure.

Proposed element formulation and numerical test:

Let the motion ¢ and the strain enhancement F be #l-elliptic and let all fields including the (pore) pressure satisfy for a real constant
3 that:
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The weak equations for balance of linear momentum, the orthogonality constraint and mass conservation are
/{Teff :sym(Vgdp) — Bpl D J[0p]}dV — Pexi(dp) = 0
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Then we have for ¢ > 0 the estimate for stability (and thus uniqueness)
[y, — || s+ 1F = B[ 2+ llp = 2l < € (1 = w!]l g+ [[F* = Fl 2+ |lp* = ') -

It can be shown that the classical test and its extension to incompatible modes satisfies uniqueness in poroelasticity [4]. We propose
the incompatible enhancement [2]
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Stable swelling of a gel disc with proposed element. Numerical inf-sup test verifying stability [3].

Conclusion:

The proposed formulation is free from severe hourglassing, locking resistant and inf-sup stable while allowing low-order interpolations
and is hence trusted to be a robust alternative to parameter-dependent low-order stabilizations methods in poroelasticity.
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