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Introduction
Biofilms, similar to other living materials, have the ability to grow and adapt in favor of their surroundings. The
growth of biofilms is often due to the secretion of extracellular polymeric substances (EPS) produced by micro-
organisms. Biofilm growth can form wrinkling or other more complicated folding patterns, overall referred to as
growth-induced instabilities, depending on the specific geometry and the boundary conditions of the problem.

Figure: Experimental results [2] of biofilm structure evolving over time.

To successfully describe wrinkling phenomena at biofilms, we will:

establish a computational framework to study growth-induced instabilities,

demonstrate the robustness and accuracy of the established framework in a broad concept,

identify key parameters on characteristic wavelength and growth of biofilm.

Computational model
Theory of Growth at Finite Strain

The continuum-based computational concept is used for the finite growth model. The growth is described by the
multiplicative decomposition of the deformation gradient F into an elastic part, Fe, and a growth part, Fg:

F = FeFg = ∇ϕ where Fg = (1 + g)I (g: growth parameter) .
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Figure: Kinematics in material & spatial configuration Figure: Kinematics of growth

Growth-Induced Instability

As the body B0 grows, stresses inside the body are induced due to the confinement. At a critical growth value (gc),
geometric instabilities are initiated in the form of wrinkling or folding.

Figure: Formation of growth induced instability as growth parameter, g, increases.

The finite element method requires the solution of the following nonlinear system, e.i. the vanishing residual vector;

R(ϕ)
!

= 0 .

Making use of Newton-Raphson scheme to solve above equation for ϕ, we linearize the resulting system of equations
as;

R(ϕk+1) = R(ϕk) +
∂R

∂ϕ

∣∣
k
· ∆ϕ

!
= 0 and ϕk+1 = ϕk + ∆ϕ .

The stiffness matrix K :=
∂R

∂ϕ

∣∣
k

and its eigenspace representation is K =
∑n

i=1Kiλi ⊗ λi .

By the symmetry of K and the orthogonality property of eigenvectors, we have;

Ki ∆ϕi = Ri ∀i ∈ {1, .., n} (no sum) .

Eigenvalue Analysis vs Perturbation Method

We demonstrate a more accurate and robust approach using eigenvalue analysis to capture the growth-induced
instabilities compared to the common approach perturbation method. Using Eigenvalue analysis and without
prescribing any perturbation to the system, we keep track of the smallest eigenvalue as it goes towards zero. At
The time it becomes zero we obtain the instability mode.

Three Representative Examples
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Figure: (A) Bifurcation study of a growing slender beam, (B) Instability study of a growing film on a soft substrate, (C) 3D instability
study of a growing film on a soft substrate.

Results
Bifurcation Study of a Growing Slender Beam
Analytical solution:
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For each mode, the following deformations are obtained;

Figure: The critical growth gc corresponds to α′is where i = 1st, 2nd, ..., 8th mode.

Numerical investigation by eigenvalue analysis: We explore the influence of different finite element types and
mesh quality, and compare the results to analytical solutions. We observed that, for example, 12 quadratic elements
(142 DOFs) are much more accurate than 48000 linear elements (107998 DOFs) when ν = 0.49. Moreover,
eigenvalue analysis accurately captures the onset of instabilities.

Bifurcation tree by perturbation:
Insight obtained enables us to compute the
complete bifurcation tree. Perturbations are
chosen as small as possible.
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Instability study of a growing film on a soft substrate

Figure: µf/µs is the stiffness ratio of biofilm to substrate. Poisson’s ratios, νf = νs = 0.49.

3D instability study Eigenvalue analysis is perturbation-free and in-
dependent of time step. We require roughly 20 iterations to compute
critical growth with 4 digits of accuracy. To achieve same accuracy,
perturbation method requires at least 104 iterations.
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Figure: Instability behavior for different thicknesses and stiffness ratios. The substrate is removed for clarity.

Future goals
Further investigation of performances of mixed and enhanced finite element types. Propose a new class of enhanced
finite element suitable for growth and growth-induced instabilities. Detailed study of period-doubling and -tripling
phenomena observed in bilayer systems.
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