Introduction

Hydrogels and their intrinsic instabilities have a wide variety of applications due to their high levels of hydrophilicity, biocompatibility, and stimulus-responsive behaviours against light, temperature, chemical, and electric fields, including:

\author{

- Actuators
 - Stretchable electronics
 - Tissue engineering
}

- Biosensing
 - Drug delivery

- Tunable wettability or adhesiveness
$\xrightarrow[\substack{\text { dry network }}]{\substack{\text { swell } \\ \text { solvent } \\ \text { Hydrogel }}}$
$\rightarrow \underset{\text { swelling }}{\text { crosslink }}$

The objective of this work includes three novel studies:

- develop a mixed \& stable computational tool based on isogeometric analysis, - provide an efficient framework for stability analysis of hydrogels,
- present numerical examples to show the robustness of the formulation.

Hydrogel Formulation

Coupled solid-deformation \& fluid-diffusion

The governing equations are derived through the variational principle. Through the incompressibility constraint $\operatorname{det}(\boldsymbol{F})=1+\nu C$ and $p:=\mu / \nu$, we consider the mixed incremental potential;
with the coupled deformation $\varphi(\boldsymbol{F}=\nabla \boldsymbol{\varphi})$ and fluid pressure p. C : concentration of solvent molecules, ν : volume of a solvent molecule.
The stationarity of the potential implies

$$
\begin{aligned}
D \Pi[\delta \boldsymbol{\varphi}] & =\int_{\mathcal{B}}\left[\left(\partial_{\boldsymbol{F}} \psi-p J \boldsymbol{F}^{-T}\right): \delta \boldsymbol{F}\right] d V-D \Pi^{\mathrm{EXT}}[\boldsymbol{\varphi}]=0, \\
D \Pi[\delta p] & =\int_{\mathcal{B}}\left[-\left(J-J_{n}\right) \delta p-\Delta t \partial_{\nabla p} \phi^{\mathrm{dissipation}} \cdot \nabla \delta p\right] d V-D \Pi^{\mathrm{EXT}}[\delta p]=0 .
\end{aligned}
$$

Material model \& solvent diffusion:
We adopt the free energy in [3]

$$
\psi(\boldsymbol{F})=\underbrace{\frac{1}{2} N k_{B} T(\boldsymbol{F}: \boldsymbol{F}-3-2 \ln (J))}_{\text {stretching part }} \underbrace{-\frac{k_{B} T}{\nu}\left[(J-1) \ln \left(\frac{J}{J-1}\right)+\frac{\chi}{J}\right]}_{\text {mixing part }}
$$

with N polymeric chains per volume, k_{B} Boltzmann factor, T temperature, χ polymer-solvent interaction parameter, D coefficient of diffusion.
The Cauchy stress \& the fluid flux:

$$
\boldsymbol{\sigma}=\frac{1}{J} \mathbf{P} \boldsymbol{F}^{T} \quad \text { and } \quad \mathbf{q}=\partial_{\nabla p} \phi^{\text {dissipation }}=-\frac{J_{n}-1}{J_{n}} \frac{D \nu}{k_{B} T} \nabla p .
$$

Mixed Isogeometric Analysis

The displacements of the solid phase and the fluid pressure are interpolated independently using higher order NURBS

$$
\varphi^{h}=\sum_{I=1}^{n_{m n}^{\varphi}} N_{I}^{\varphi} \mathbf{u}_{I} \text { and } p^{h}=\sum_{I=1}^{n_{e n}^{p}} N_{I}^{\text {pres }} p_{I}
$$

Subdivision stabilization: Stable \& efficient interpolations of displacement and pressure are achieved; the global definition of B -splines is conserved. The two-scale relation is used to form the coarse basis (pressure interpolation)

$$
N_{i, p}^{\text {pres }}(\xi)=\frac{1}{2^{p}} \sum_{k=0}^{p+1}\binom{+1}{k} N_{2 i+k-1, p}^{\varphi}(\xi) \quad \rightarrow \quad \boldsymbol{N}^{\text {pres }}(\boldsymbol{\xi})=\boldsymbol{S} \boldsymbol{N}^{\varphi}(\boldsymbol{\xi})
$$

Stability Analysis for Saddle-Point Formulation We take the second derivative of the potential $\Pi(\boldsymbol{\varphi}, p)$ for stability assessment. Linearization, discretization, and assembly of finite elements in a discrete system:

$$
\underbrace{\left[\begin{array}{cc}
\boldsymbol{K}_{\varphi \varphi} & \boldsymbol{K}_{\varphi p} \\
\boldsymbol{K}_{p \varphi} & \boldsymbol{K}_{p p}
\end{array}\right]}_{\boldsymbol{K}}\left[\begin{array}{c}
\Delta \boldsymbol{u} \\
\Delta p
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{R}_{\varphi} \\
\boldsymbol{R}_{p}
\end{array}\right]
$$

The resulting system \boldsymbol{K} is $\mathbf{1}$ symmetric $\boldsymbol{(2}$ indefinite (due to saddle point nature). Eigenvalue analysis: Eigenvalues of saddle-point problems are not suitable for stability analysis. Use the Schur compliments of \boldsymbol{K} for the eigenvalue analysis

$$
\boldsymbol{K}^{*}=\boldsymbol{K}_{\varphi \varphi}-\boldsymbol{K}_{\varphi p} \boldsymbol{K}_{p p}^{-1} \boldsymbol{K}_{p \varphi} \text { and } \boldsymbol{K}^{* *}=-\boldsymbol{K}_{p p} \text { (both symm. and PSD) }
$$

Numerical Examples

Example I shows the rubostness of the current formulation in a compressed hydrogel disc and the stability is assessed via numerical inf-sup test.
Example II emphasizes the proper structural stability criteria and captures the instabilities due to the free-swelling of a hydrogel corona.

Ex I: Compression of a Fully Swollen Hydrogel - Compressed by 25%. © No-flow boundary conditions on the boundaries

Observations: © Classical ($Q 2 / Q 2$) formulation suffers from pressure oscillations; failed the inf-sup test. (2) Current $\left(Q 2_{S D} / Q 2\right)$ formulation shows oscillation-free results; satisfies the inf-sup condition. (3) Current stable $Q 2_{S D} / Q 2$ benefits from equal order interpolation \& higher order regularity.
Ex II: Diffusion-Induced Buckling of a Hydrogel
Gs Study 1: Eigenvalue analysis on \boldsymbol{K}^{*}. Aim: capture the onset \& the shape.
(\} Study 2: Prescribing perturbations. Aim: capture the post-buckling curve.

First eigenmode at the onset of instability
Study 3: Systematic investigation. Aim: determine the critical conditions.

Observations: (1) The critical conditions are accurately captured for $R_{\text {in }} / R_{\text {out }}$. (2) Concurrent eigenvalue analysis provides insights for prescribing perturbations. (3) Eigenvalue analysis on \boldsymbol{K}^{*} proves to be efficient for systematic studies.

Future Goals

Adopting the mixed and stable isogeometric analysis and the suitable stability citeria, we aim to investigate snap-through and snap-back instabilities recently observed in hydrogel applications, e.g. fringe, fingering, cavitation, and crease.

References

[1] Ono et al (2007). Nat. Mater. 6:429
[2] Takahashi et al (2016). Soft Matter 12:5081-8.
[3] P.J. Flory and J. Rehner (1943). J. Chem. Phys. 11:521-526
[4] T. Rüberg and F. Cirak (2012). CMAME 209-212, 266-283
[5] B. Dortdivanlioglu et al. (2017). CMAME, 316:261-279.
[6] B. Dortdivanlioglu et al. (2018). IJNME, 114(1):28-46.
[7] B. Dortdivanlioglu \& C Linder (2019). J. Mech. Phys. Solids 125:38-52
[8] B. Dortdivanlioglu et al. (2021). J. Elast. 145(1):31-47.

