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Introduction

Hydrogels and their intrinsic instabilities have a wide variety of applications due to
their high levels of hydrophilicity, biocompatibility, and stimulus-responsive
behaviours against light, temperature, chemical, and electric fields, including:

Actuators

Stretchable electronics

Tissue engineering

Biosensing

Drug delivery

Tunable wettability or adhesiveness . . .
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Hydrogel = polymer + water.
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Large swelling of hydrogels1. Global and local instability modes2.

The objective of this work includes three novel studies:

develop a mixed & stable computational tool based on isogeometric analysis,

provide an efficient framework for stability analysis of hydrogels,

present numerical examples to show the robustness of the formulation.

Hydrogel Formulation

Coupled solid-deformation & fluid-diffusion

The governing equations are derived through the variational principle. Through the
incompressibility constraint det(F ) = 1 + νC and p := µ/ν, we consider the mixed
incremental potential;

Π(ϕ, p) =

∫

B

[

ψ − p(J − Jn)−∆t φdissipation(−∇p;F n)

]

dV − ΠEXT(ϕ̄, p̄)

with the coupled deformation ϕ (F = ∇ϕ) and fluid pressure p. C: concentration
of solvent molecules, ν: volume of a solvent molecule.
The stationarity of the potential implies

DΠ[δϕ] =

∫

B

[
(∂Fψ − p JF−T ) : δF

]
dV −DΠEXT[ϕ] = 0,

DΠ[δp] =

∫

B

[
−(J − Jn)δp−∆t∂∇pφ

dissipation · ∇δp
]
dV −DΠEXT[δp] = 0 .

Material model & solvent diffusion:

We adopt the free energy in [3]:

ψ(F ) =
1

2
NkBT (F : F − 3− 2 ln(J))

︸ ︷︷ ︸
stretching part

−
kBT

ν

[
(J − 1) ln(

J

J − 1
) +

χ

J

]

︸ ︷︷ ︸
mixing part

with N polymeric chains per volume, kB Boltzmann factor, T temperature, χ
polymer-solvent interaction parameter, D coefficient of diffusion.
The Cauchy stress & the fluid flux:

σ =
1

J
PF T and q = ∂∇pφ

dissipation = −
Jn − 1

Jn

Dν

kBT
∇p.

Mixed Isogeometric Analysis

The displacements of the solid phase and the
fluid pressure are interpolated independently using
higher order NURBS.

ϕh =

nϕen∑

I=1

Nϕ
I uI and ph =

npen∑

I=1

N pres
I pI

 0

 1
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Subdivision stabilization: Stable & efficient interpolations of displacement and
pressure are achieved; the global definition of B-splines is conserved.
The two-scale relation is used to form the coarse basis (pressure interpolation)

N pres
i,p (ξ) =

1

2p

p+1
∑

k=0

(
p + 1

k

)

Nϕ
2i+k−1,p(ξ) → N pres(ξ) = S Nϕ(ξ)
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Linear B-splines
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Quadratic B-splines
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Stability Analysis for Saddle-Point Formulation

We take the second derivative of the potential Π(ϕ, p) for stability assessment.
Linearization, discretization, and assembly of finite elements in a discrete system:

[
Kϕϕ Kϕp

Kpϕ Kpp

]

︸ ︷︷ ︸
K

[
∆u

∆p

]

=

[
Rϕ

Rp

]

The resulting system K is ❶ symmetric ❷ indefinite (due to saddle point nature).
Eigenvalue analysis: Eigenvalues of saddle-point problems are not suitable for
stability analysis. Use the Schur compliments of K for the eigenvalue analysis

K∗ = Kϕϕ −KϕpK
−1
ppKpϕ and K∗∗ = −Kpp (both symm. and PSD)

Numerical Examples

Example I shows the rubostness of the current formulation in a compressed
hydrogel disc and the stability is assessed via numerical inf-sup test.

Example II emphasizes the proper structural stability criteria and captures the
instabilities due to the free-swelling of a hydrogel corona.
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Part I: Fully swollen hydrogel disc (λ0 = 3.3)
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=
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Rin

Part II: Thin hydrogel ring immersed in water (λ0 = 1.1)

Ex I: Compression of a Fully Swollen Hydrogel

Compressed by 25%. No-flow boundary conditions on the boundaries.

Q2/Q2 (Classical formulation) Q2SD/Q2 (Current formulation)
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The inf-sup parameter α.

Observations: ❶ Classical (Q2/Q2) formulation suffers from pressure oscillations;
failed the inf-sup test. ❷ Current (Q2SD/Q2) formulation shows oscillation-free
results; satisfies the inf-sup condition. ❸ Current stable Q2SD/Q2 benefits from
equal order interpolation & higher order regularity.

Ex II: Diffusion-Induced Buckling of a Hydrogel

♣ Study 1: Eigenvalue analysis on K∗. Aim: capture the onset & the shape.
♣ Study 2: Prescribing perturbations. Aim: capture the post-buckling curve.
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First eigenmode at the onset of instability

♣ Study 3: Systematic investigation. Aim: determine the critical conditions.

Rin/Rout = 0.2 Rin/Rout = 0.24 Rin/Rout = 0.44 Rin/Rout = 0.48 Rin/Rout = 0.6 Rin/Rout = 0.68 Rin/Rout = 0.72 Rin/Rout = 0.8

Observations: ❶ The critical conditions are accurately captured for Rin/Rout. ❷

Concurrent eigenvalue analysis provides insights for prescribing perturbations. ❸

Eigenvalue analysis on K∗ proves to be efficient for systematic studies.

Future Goals

Adopting the mixed and stable isogeometric analysis and the suitable stability
citeria, we aim to investigate snap–through and snap–back instabilities recently
observed in hydrogel applications, e.g. fringe, fingering, cavitation, and crease.
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