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Introduction
New materials are a key driver for the progression of our built environment. An astonishing
interplay of microstructural phenomena in biological materials results in macroscopic properties
exceeding by far those of our engineered materials. Thus, this project investigates microscopic
mechanisms in soft matter materials characterized by their inherent network microstructure.

doi:10.1038/nature11409
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To successfully adapt characteristics from natural to engineered materials, we:

identify characteristic mechanisms in natural soft matter materials;

develop microscopic models to approximate those;

transfer them to scales relevant for engineering applications.

Network representation of soft matter materials
The response of soft matter materials is described by the decomposition into:

elastic ground network, which incorporates the strongly cross-linked macromolecules and
produces the macroscopic elastic response;

viscous mobile subnetwork, which is formed by superimposed mobile macromolecules based on
entanglement mechanisms. It is transient in nature and responsible for the viscous overstress.
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Free energy:̄Ψ = Ψ̄e(g; F̄ ) + Ψ̄v(g,I ; F̄ ) with Ψ̄v =
∑s

i=1 Ψ̄
v
i (g,I i; F̄ )

Stress: τ̄ = τ̄ e + τ̄ v with τ̄ e = 2∂gΨ̄
e(g; F̄ ) and τ̄ v = 2∂gΨ̄

v(g,I ; F̄ )

Dissipation:Dloc = −∂IΨ̄ · İ =
∑s

i=1Dloc,i ≥ 0 with Dloc,i = −∂I i
Ψ̄ · İ i

Elastic mechanisms in soft matter materials
The maximal-advance-path-constraint based microscopic model

Assuming that junction points do not perform any thermal motion, that all fibers in the network
are of one single type and uniform properties, that the initial network consists of fibers with the
same end-to-end distance oriented isotropically, and that the deformation of fibers with equal
initial orientation coincides strictly, the following statistical description is possible:
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The maximal advance path constraint can then be derived as

〈λ⊗ λ0〉 =

∫

S0

λ(λ0)⊗ λ0dλ0 =
1

3
F .

The homogenized macroscopic response

With the assumption that the network total energy can be expressed in terms of the stretch
vector λ, the constraint variational principle of minimum averaged free energy is given as

Ψe[λ] ∼ 〈ψf〉 =
1

|S0|

∫

S0

ψf(|λ(λ0)|) |dλ0| −→
λ(λ0)

min

〈λ⊗ λ0〉 =
1

|S0|

∫

S0

λ(λ0)⊗ λ0 |dλ0| =
1

3
F ,

which results in the homogenized equilibrium stress as

P = ∂FΨ
∗
net = n

〈

∂Fψf(|λ
∗|)
〉

= n
〈

f f(λ
∗)⊗ λ0

〉

.

Inelastic mechanisms in soft matter materials
The Brownian motion based microscopic model
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Each macromolecule is modeled based on Gaussian chain statistics as

p(r) =
( 3

2πr20

)
3
2 exp

[

−
3

2
λ2
]

, S(r) = −
3

2
kBλ

2 and A(r) =
3

2
kBθλ

2 with λ =
r

r0
.

Viscosity is assumed to be concentrated at the chain end points, which move based on
〈

v±
〉

= v̄± +
〈

v±
ch

〉

where v̄± = ±l r/2 represents the motion of the surrounding viscous medium, and
〈

v±
ch

〉

= ∓1
η∇rUch(r, t) is the motion of the thermally active chains.

Insertion of Uch(x, t) = kBθ ln p(x, t) + U(x) yields the relative motion of the end points

(
〈

v+
〉

−
〈

v−
〉

)/r0 =
〈

λ̇
〉

= lλ−Dλ∇λ

[

ln p(λ, t) +
3

2
λ2
]

with Dλ =
2 kBθ

η r20
.

The re-orientation and re-distribution of the chain is then given by the modified Smoluchowski
equation as

∂tp(λ, t) = −divλ
(

p(λ, t)lλ
)

+ divλ
(

Dλ p(λ, t)∇λ

[

ln p(λ, t) +
3

2
λ2
])

.

The diffusion based homogenized macroscopic response
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The homogenized viscous response is obtained through an introduced micro-deformation map

P finally resulting in an evolution equation of the form Ȧ = 6Dλ
(

C̄
−1
−A

)

and closed form

solutions for the energy and overstress as

Ψ̄v = 1
2µ

v
[

(

A : C̄ − 3
)

− ln
(

detA
)

]

and τ̄ v = µvF̄AF̄
T
.

Homogenized response of engineering applications

Inhomogeneous shear of a rubber plate

Stress distribution σ   of the specimen
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