0.025	8.5	$0.86^{1.2}_{1.1}$	+ 5	$\theta: \theta $	
0.035	9.5	0.95	5 - 25	9:98	
0.045	0.05	-0.08	5 2.0 3.5	9:97	
0.055	0.10		5 - 450	0:08	
0.065	Mut ₁ -Sca	le Mechanical Model for	predicting Fracture Initiat		
0.075	$\frac{1}{10.30}$		5 - 6.50	0.04	
0.085	0.10	in Strain-Crystander	ng Rubbers 7.50	0.03	Computational Mechanics
0.095	0.65		5 - 8.50	0.02	of Materials lab
0.001	0.75	Prajwal Kammardi Arunachalan Rezi	a Rastak, Christian Linder 9.50	0.01	
0.002	0.85	$-00065^{9.5}$	5 0.050	0.01 D35	
0.003	0.95	-0.025	5 0.150	0.02	
0.004	-0.09	-0.012	5 0.250	0.03	
0.007	-0.08	-0.003	0.350	0.04	
0.008	Rubber-based materials find a myriad of applications in epidermal elec	ctronics, self-actuators, implantable sensors	eal internal energy required to break the crystallite (is empirically assumed based on that for the elastic
0.009	etc. due to their desirable properties like high stretchability, high tough	nness, small modulus and low cost. Certain	Is ε^f_{bond} . Total effective critical energy is postulated a	4915	
0.011	rubbers, like Natural Rubber (NR), have been found to exposit a mul	Iti-scale phenomenon called Strain-Induced 0.0006	0.650	0.025	$nN\varepsilon^f$ ε^f
0.012	Crystallization (SIC) which reinforces against fracture. -0.04		$\varepsilon_{cr,eff}^{f} = \varepsilon_{bond}^{f} + \varepsilon_{crystal}^{f} = n N \varepsilon_{b}^{f} 0_{crystal}$	0.35	$\varepsilon_{\text{bond}}^{f} = \frac{\pi r r c_{b}}{1 - c_{b}} = \frac{c_{\text{cr}}}{1 - c_{b}}$
0.013	$\wedge \wedge \wedge -0.03$	Low strain	The pergy for runture is postulated as 0.85θ):095	$\omega \qquad 1-\omega \qquad 1-\omega$
0.014			5 0.95	0.085	
0.016		-0.005.00	$\varepsilon_R = \max_{l=1,\dots,n_{\text{infl}}} \delta_{Q}$		$(1-\omega_l)$
0.017		-0.085	$-0.08 \theta_{-0.7} \theta_{-0.7}$):063	
0.018	$\bigcirc \cdots \cdots \bigcirc 0.02$	-0.085	$\frac{-0.07}{6}$	9:633	
0.019	0.03 amor	prphous polymer chain -0.065	$6 -0.00 \theta_{-0.050}$	9:043	$\varepsilon^f_{\sf cr}$
0.021	DSfrrrrrrrrrr	High strain -1.005	5 -0.03θ	9:035	
0.022	r Strag replacements 0.00 0.00		4 $\begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & $	9:825 1 AA2	
0.023			\mathbf{p} / / \mathbf{p} / / \mathbf{p}	1:443	

$$ilde{c}\left(\chi, \hat{oldsymbol{v}}, oldsymbol{\lambda}_0
ight) = rac{ar{c}}{\left[\sum_{i=1}^3 \chi_i^2 \left(\sin^{-1}\mid \hat{oldsymbol{v}}_i \cdot oldsymbol{\lambda}_0\mid
ight)^{\chi_2/\chi_1} + \gamma
ight]^{p_c}}$$

Path Constraint (MAPC) [4] as

Minimize $\langle \bar{\psi} \rangle$ subject to $\langle {m \lambda} \otimes {m \lambda}_0
angle = rac{1}{3} ar{m F}$

This accounts for non-affine, anisotropic deformations; hence advantageous for fracture applications.

Macroscale Crystallinity Distribution

A crystallinity distribution [5] using parameters $\Omega_i = [\phi_{1i}, \phi_{2i}, a_i, b_i]$ centered around axes $\{\hat{u}_1, \hat{u}_2, \hat{u}_3\}$ is given by

 $\omega = \sum_{i=1} \chi_i \, \hat{\omega}_i = \sum_{i=1} \chi_i \, a_i \, \exp\left(-b_i (\ln\cos\theta_i)^2\right) \quad \text{with} \quad \cos\theta_i = |\hat{\boldsymbol{u}}_i \cdot \boldsymbol{\lambda}_0|$

Distribution parameters are fit using least squared minimization of error between apparent crystallinity rate $ilde{\omega}$ using this distribution and the actual chain crystallinity rate $\dot{\omega}$.

Specime Stress-stretch curves for different strain rates Stress-stretch behavior and the delayed fracture initiation due to crystallization are well predicted.

References

[1] Y. Mao, B. Talamini & L. Anand (2017). *Extreme Mech. Lett.* 13:17-24. [2] B. Talamini, Y. Mao & L. Anand (2018). *J. Mech. Phys. Solids* 111:434-457. [3] P. K. Arunachala, R. Rastak & C. Linder (2021). J. Mech. Phys. Solids 157:104617. [4] M. Tkachuk & C. Linder (2012). *Philos. Mag.* 92:2779-2808. [5] R. Rastak & C. Linder (2018). *J. Mech. Phys. Solids* 111:67-99. [6] S. Toki et al. (2003). *Polymer* 44:6003-6011. [7] X. Chen et al. (2019). *App. Mat. Int.* 11:47535-47544. [8] S. Gherib et al. (2010). *J. Appl. Polym. Sci.* 118:435-445.

Stanford ENGINEERING Civil & Environmental Engineering Stanford University

