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Introduction

Researchers around the world are creating the technologies to produce efficient and
robust stretchable and wearable electronics. For example, a new method is recently
developed to create stretchable transistor arrays for wearable applications [1].
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Still, many aspects of designing a fully stretchable circuit are challenging. For
example, conductors and semi-conductors are usually much stiffer than the
substrate and have lower stretchability. This means that the elastic substrate has to
absorb most of the mechanical strain in order to protect electronic components.
The location of the components and their distance has a big effect on the
performance of the device. In general, large substrate and greater distance between
electronic components would result in better stretchability of the whole system.
However, electronic circuits need to be compact and space efficient. Also large
distance between component increase the length of the interconnects and increases
internal resistance of the device. It is generally hard to balance the need for
stretchability, space-efficiency, and better electrical properties.
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Optimization using particle swarm

In general, optimization refers to the methods for finding design variable that
minimize a give function, called the objective function. In addition to the objective
function, the optimization can restrict the possible values of the design variables.
These restrictions are called constraints. The concept of the objective function and
the constraints can be seen for one dimensional and two dimensional cases.
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Particle swarm optimization is well-known general optimization methods. It has
inspired from the collective brain of small insects such as ants and bees. A swarm of
particle are chosen each represent a design. The particles compute the objective
function and check for the constraints. At each step, the particle that finds the best
response communicates this information to other particles. Each particle uses the
swarm information and the information from its memory at previous step to
calculate its next trajectory. The particles eventually converge to the global optimal
point of the domain even if there are multiple local minima.
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In this study:

Design variables: The dimensions of the circuit board and the location of
every component.

Objective function: We optimize the circuits to have the minimum surface
area.

constraints: We ensure that each component does not exceed its mechanical
damage limit and they don’t physically overlap

Results

To demonstrate the capabilities of the optimization method we chose three
components with the following properties.

component # width height Young’s Modulus (E) Max. strain color
1 1 mm 1 mm 0.5 MPa 10 % �

2 2 mm 1 mm 1.0 MPa 20 % �

3 1 mm 1.5 mm 0.6 MPa 20 % �

The results show that the algorithm is able to move components to their optimal
location and gradually reduce the size of the total device. The objective function
(area) decreases continuously until it becomes stable. As seen in the figures,
individual designs may be faulty for having component overlap, but the best designs
always perform good. The finite element simulation is only run for the components
without any overlap.
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Finite element simulation

During optimization, at every step and for each particle, a two dimensional finite
element simulation is performed. Using the geometry of the device, a quadrilateral
mesh is create with the software CUBIT. The resulting mesh is then supplied to
the finite element code DealFEM. This program is able to produce accurate
simulations with local mesh refinement as seen in the next figures. The
neo-hookean material model is used to produce these results.
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Future work

There are many future directions for this optimization study.

Test the optimized designed with real materials.

Improve the efficiency of the optimization algorithm

Develop a analytical theory about stretchability optimization.

Extend to three dimensional geometries.
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