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Introduction
Lithium-ion batteries are important energy storage devices with a wide range of applications. Developing
advanced multi-physics models to describe the complex physical processes happening in batteries is crucial
for understanding different aging mechanisms, improving cell design, and better controlling cells in a battery
management system. In addition, for battery modules or packs with larger size, the inhomogeneity of the
electric and the thermal fields exhibited by the spatial scale greatly affects the performance of the battery.
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microscale: Si nanoparticles before/after charging [1] macroscale: an aged 20 Ah LiNiMnCo cell [2] overview of LIBs research

In this work, we developed an electro-chemo-thermo-mechanical coupled model to study how mechanical
deformation affects the electrochemical performance of lithium-ion batteries. In this model, an electro-chemical
(so-called DualFoil) model is coupled with a thermo-mechanical model. Mechanical deformation impacts cell
electro-chemical properties via the porosity change in the electrodes and the separator due to interrelation
induced volume change of the active materials and externally applied mechanical loading. The model can be
used to efficiently study 3D cells with large geometry and resolve the spatial variation of the fields of interest.
Furthermore, the correlation between mechanical deformation and Lithium plating can be explained using this
model.

Theory
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Charge conservation ∇x · (is + ie) = 0 with ∇x · ie = −aFjn
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Energy balance equation ρCp
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Table: Summary of equations used to describe the involved physics in the model [4, 5].

Simulation Procedure
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Thermomechanical Model: A coupled model that solves for the displacement and temperature fields at the
large deformation setting.

DualFoil Model: An electrochemical model that describes the charge-transfer kinetics, mass transport, and
the electric potential variations inside a battery.

Electrical Balance: An user-defined API to apply the electrical loading.

Li Plating: Its occurrence is related to the anode surface potential, ηa = φs − φe − ULi.

Numerical Examples

Discharge simulation of a commercial 18650 cell
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Charge/discharge simulation of a prismatic cell

Discharge simulation of a high capacity electric vehicle cell
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Li metal is an ideal anode material because of its high theoretical specific capacity, low density, and the
lowest negative electrochemical potential.

Dendritic Li growth poses a major safety challenge to Li metal based cells.

Mechanical constraints have been demonstrated both theoretically and experimentally to be able to suppress
Li dendrite formations, as shown in Figure (c)-(f) [6-8].

Goal: Develop novel multiphysics computational tools to understand mechanical impact on Li dendrite
formation mechanism.
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